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Scientific management of science?

"
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E-mail: baruch@cmu.edu

Abstract. A framework is advanced for allocating research resources, based on the value of the
information that proposed projects are expected to produce. As an organizing device, the frame-
work uses integrated assessments, showing the relationships between the predictors of outcomes
arising in important decisions (e.g., interest rates, mortality rates, crop yields, crime probabilities).
Proposed projects are evaluated in terms of their ability to sharpen estimates either of those
variables or of the relationships among them. This approach is intended to allow diverse forms of
science to show their potential impacts -while encouraging them to integrate their work. Where
suitable estimates are available, the expected value of the information from alternative studies can
be computed and compared. However, even at a qualitative level, formal analyses can improve the
efficiency and integration of research programs.

Scientific management of science?

~

~

Science requires resources. At the very least, it needs the time and energies of
skilled individuals. Often, it requires money as well -in order to secure the
facilities, release time, travel expenses, and other things that money can bring.

As a result, allocating resources is a task that, in one way or another,
occupies all scientists. As individuals, they must make choices about which
projects to pursue and which to abandon, when to take on additional students
and when to concentrate on current ones, and whether to spend a week in the
lab or at a workshop. If they choose well, scientists increase their chances of
living rewarding lives, producing useful results, and leaving a legacy of admiring
students and colleagues -not to mention receiving tenure, grants, patents, and
other tangible benefits.

When individual scientists choose poorly, they are the primary losers.
Although funders might lament not having invested their resources more
wisely, the opportunity costs of single projects are seldom that large. The stakes
increase when investments are made in areas, rather than in individual projects.
Sciences (and scientists) could do quite well for themselves, even as sponsors
receive a poor return on substantial investments. This essay offers a framework
for managing the allocation of research resources, drawing upon the tools
of decision theory (Clemen, 1991; Grayston, 1960; Green and Swets, 1966;
Keeney, Hammond and Raiffa, 1998; Morgan and Henrion, 1990; Raiffa,
1968) and experiences with priority setting (National Research Council,
1995a, b; 1998a, b ).
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Selection criteria

Science today has multiple sponsors, including society as a whole (acting
through government agencies), interest groups (acting through research foun-
dations), or firms (acting through in-house and extramural research programs).
The projects that each funds should pass two criteria: (a) the sponsors consider
the topics worth understanding and (b) the relevant sciences can make enough
progress to justify the investment.

The former criterion is a matter of the funders' tastes, needs, ethics, etc.
These values could be widely shared (e.g., curing a major disease) or fairly
specialized (e.g., determining the roots of a small language group). They might
even be controversial. For example, the social sciences sometimes run afoul of
people who resent empirical challenges to their intuitive (or ideological) claims
about human nature. A pluralistic society may need multiple funding sources,
in order to satisfy its citizens' diverse needs.

The latter criterion requires candid input from scientists, regarding what
they can produce, if provided resources. If scientists promise more than they
can deliver, then they may divert resources from more worthy causes. If scientists
understate their capabilities, resources may go to less worthy causes (including,
perhaps, sciences less candid about their limitations).

Analytical options and hesitations

If these two sets of assessments exist, then there are formal methods for their
combination (Grayson, 1960; Platt, 1964). These procedures calculate the
expected value of the information from each proposed research project or
program, valued in terms of what funders want to learn. They are, however,
rarely used. Rather, scientists and research managers render educated judgments
about which investments make the most sense to them (National Research
Council, 1995a, b; Tengs, 1998).

On the surface at least, there are good reasons to avoid formalization.
Analysis requires quantification of both criteria. Neither task is for the faint of
heart. Each could distort funding if done poorly. A numerical approach to
values could unduly favor research focused on readily quantified outcomes
(e.g., economic benefits, deaths averted), and create an unhealthy demand for
quantification procedures. Those concerned about hard-to-measure outcomes
(e.g., endangered species with no commercial uses, peace of mind, understand-
ing of ancient civilizations) may see an unsavory choice between adopting poor
measures and being ignored altogether.

Estimating what research is likely to reveal about these valued outcomes
faces its own problems. Some scientists dislike assigning probabilities to anything
but relative frequencies of previously observed events (and not the outcomes of
possible experiments). Some scientists dislike predicting the yield of studies
whose very design depends on other, yet-to-be conducted studies. When scien-
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tists are willing to make predictions, careful elicitation is needed to capture
their beliefs (Morgan and Henrion, 1990), which may still prove to be poor
guides to the future. Studies have sometimes found expert forecasts to be
overconfident or in wild disagreement. That seems especially likely in situations
lacking the conditions needed for learning how to assess uncertainty: prompt,
unambiguous feedback that rewards candor (Fischhoff, 1977; Kahneman,
Slovic and Tversky, 1982; Kammen and Hassendzahl, 1999; Morgan and Keith,
1995; Murphy and Brown, 1984; Yates, 1990). A lifetime (or professional
career) of making value judgments and assessing uncertainties provides no
guarantee of being able to express oneself in the language of analysis (Fischhoff,
1980; 1989).

~

Alternatives to analysis

~

These risks of analysis must then be compared to those of the alternative. In the
traditional, informal process (a) funders specify their general priorities, (b)
scientists propose projects promising relevant progress, (c) funders support the
seeming 'best buys,' and ( d) researchers do the best they can with what they get,
while positioning themselves to make even better promises for the next funding
cycle.

Scientists can shape this process by influencing either what the funders value
or what they expect to get from research. Like other citizens, scientists can
lobby for particular topics. They might point to the severity of a health problem
(e.g., asthma) or to the beauty of an intellectual pursuit (e.g., measuring the
dark matter in the universe). If funders accept these tastes, then these sciences
will benefit. Or, scientists can influence expectations by showing how their work
or discipline can achieve funders' goals.

Science's many successes show that these informal processes have some
validity. However, it is easy to imagine their weaknesses. Scientists can distort
the goal-setting process by assuming unwarranted moral authority, asserting
their priorities as those of society's. Scientists can distort the assessment of
research opportunities, by making unrealistic promises. They may be deluding
themselves, overly enthused about what they hope to find, or they may be acting
strategically in order to get disproportionate attention.

Biased claims need not distort resource allocation -if all sciences have equal
ability to make their case. The process will be suboptimal, however, if some
disciplines hog the limelight, have particularly inflated self-assessments,
criticize colleagues with particular harshness, or find the politics of funding
particularly distasteful.

Once out of kilter, an allocation system may be hard to fix. Both funders and
recipients have strong incentives to defend past expenditures. Moreover, funding
can create a 'treatment effect' that is difficult to detect or undo (Einhorn, 1982):
receiving resources increases scientists' chances of producing interesting results,
recruiting talented students, and discovering serendipitous findings. As a result,
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funded scientists will tend to be more productive, prominent, etc., than their
unfunded colleagues. One knows that those other scientists would have done
something had they had the resources. However, such possibilities are inevitably
less tangible than actual research results, whose existence helps to define what
science and society value.

!"
Planned and unplanned analysis

In addition to their near-term performance, resource-allocation processes must
be judged on their ability to learn. Science is a great experiment. As such, it
needs to have explicit expectations in order to get the prompt, unambiguous
feedback needed to evaluate and improve its practices. Without an analytical
approach, fifty years from now, science will still be guided by the best guesses of
those invited to the critical allocation meetings. Those guesses are expert judg-
ments, but judgments nonetheless. The hypotheses underlying them need to be
clearly stated and evaluated, if the management of science is to follow the
canons of science.

Arguably, 'trusting us' has served society well. However, that claim remains
a matter of judgment. To the extent that allocation choices are made in a black
box, it is harder to defend choices and demonstrate performance when funders
must justify their portfolios to their constituencies (be they voters, trustees, etc.)
(NRC, 1998b). When those justifications fail, the price just might be a slower
increase in funding. However, it could also be the chaos created by mechanical
reliance on imperfect productivity measures (e.g., number of publications,
patents, citations, graduate students, experiments, matching industry contracts)
capable of capturing only some parts of some sciences. Another is political
meddling (e.g., legislative earmarking of funds), more capable of representing
what people want from science than what they can get.

Easing into analysis

Decision theory, economics, operations research, and management science all
offer formal methods for analyzing the informational yield of possible actions.
Yet, it is hard to find a whisper of them in any allocation process or perform-
ance review. Hubris and defensiveness may account for some of this reluctance.
However, there can also be more legitimate reasons: scientists are busy, with
little time to mess with new formalisms, especially ones that might stand
between them and their intuitions. Even scientists may prefer to make choices
that feel right to choices that emerge from an unfamiliar algorithm, whatever
its pedigree. Because analytical intuitions accrue slowly, an abrupt procedural
change may, indeed, be imprudent.

Moreover, even for the analytically fluent, productive change could not come
very fast. Allocation decisions regarding research resources are fundamentally
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complex. A formal allocation procedure with requisite variety must also be
complex. It cannot be developed overnight.

Thus, neither method nor users are ready for one another. One way out of
this stalemate is to cultivate them in tandem. That is, begin with a version of the
formal approach that is simple enough to make sense to practicing scientists,
while still being compatible with more complex analyses. Let scientists try it
out, adapt it to their needs, and challenge the analysts to improve it. Over time,
scientists and analysts may learn one another's language and concerns.

One way to connect models and intuitions is through examples, instantiating
common situations. Over time, these stories can become templates for character-
izing real-world problems (e.g., 'That looks like an inclined plane,' 'You're
committing the base-rate fallacy,' 'Those incentives create an agency problem.')
Such pattern-matching would be a natural stepping stone to learning how to
add the unique features of specific applications and, eventually, solving novel
problems from first principles.

To this end, the next section proposes a general analytical approach for setting
research priorities, followed by two examples. These examples attempt to illus-
trate the approach's logic in two domains, showing how it could accommodate
a variety of research projects. The conclusion considers the institutional steps
for implementing such an approach.

The value of scientific information

.

A general method should allow any potentially relevant science to articulate the
case for investing in it, with that effort advancing the pursuit of knowledge,
without costing too much. It should help scientists to connect what interests
them with what matters to funders, creating a clearer trail from the lab to the
world.

Decision analysis provides the most general approach to valuing the yield of
information-gathering exercises. It is known, appropriately enough, as value-
of-information analysis (Clemen, 1991; Morgan and Henrion, 1990; Raiffa,
1968). It asks how the expected value of a decision is expected to change if one
waits for the results of a study. The message of those results might be specific -
as when a test clarifies a medical diagnosis and the corresponding treatment.
Or, it might be general -as when research produces a diagnostic test that could
improve many surgery decisions. The same logic applies whatever the focal
impact (e.g., dollars, peace ofmind, QALYs).

The logic of the analysis is straightforward in principle. First, identify each
link between the research results and the valued outcomes. Then, assess the
expected impacts of the research on reducing the uncertainty in those links. The
most valuable projects are those that contribute the most to understanding (and
perhaps affecting) those focal outcomes. Such thinking is implicit in scientists'
thinking; why else would they choose their projects? However, rendering it
explicit is a nontrivial chore.
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Some basic researchers may find it a disagreeable chore, insofar as such
consequentialist thinking offends their personal commitment to knowledge
for knowledge's sake. Moreover, they must work harder than more applied
researchers, to construct the inferential chains from research to practice. The
intrinsic motivation for making this effort is understanding better the context
for their research and its potentially useful connections. The extrinsic motivation
is obtaining their rightful share of research resources generated by practical
concerns. Analysis allows them to show how basic research results could affect
many decisions, thereby having a large aggregate impact, even if the expected
contribution to each decision is small. Problem-focused research programs
should feel an obligation to show just what difference their results could make.
Otherwise, they are vulnerable to the charge of exploiting a sponsor's concerns
in order to satisfy their personal curiosity.

As mentioned, one can accept the idea of analysis in principle, but reject it in
practice, if it seems unfair or unintuitive. The following section attempts to
address these concerns with a concrete example, showing how different sciences
can demonstrate their relevance in value-of-information terms.

Information extraction -a prospecting metaphor

-

Oil prospectors are forever looking for additional sources. With limited equip-
ment, personnel, and capital, prospectors need to decide where to drill. If they
drill in the center of known fields, then they are likely to hit oil, but unlikely to
learn much new. As a result, the expected information-to-cost ratio should be
low (but not zero, as long as surprises are possible). Drilling near the periphery
of known fields has a lower probability of finding oil, but higher informational
value for what is found. Moreover, even dry holes can be informative (e.g.,
bounding the field, sharpening reserve estimates, clarifying geological struc-
tures ). The practical value of that improved understanding is reflected in the
improved efficiency of subsequent exploration decisions (Grayson, 1960).

Those calculations require quantitative estimates of the parameters in those
decisions. Some are readily available, such as current day rates for rigs and
crews. Others can be estimated from historical patterns, such as the days per
exploratory drill, costs per subsequent development drill, and the market value
of new oil from such formations. Still other estimates require expert judgment,
such as the chances of finding specific features at various depths, given the
partially known geology.

Formal analyses would calculate the expected value of the information from
a proposed test drill for the set of contingent decisions. If that value exceeds the
expected costs, then it passes a cost-benefit test, measured in money or another
metric. It is then worth comparing to other possible test drills in order to
identify the most cost-effective options -providing the greatest expected infor-
mation yield, relative to their cost. Those calculations will reflect commercial
considerations as well as scientific and engineering ones. For example, if a
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firm's lease is about to expire, exploratory drilling will only have value if it can
inform the bidding for lease renewal.

In addition to elaborating their knowledge of existing fields, oil prospectors
sink exploratory holes in relatively unfamiliar areas, hoping for pleasant sur-
prises. They might see a good probability of a modest deposit, a small probability
of a large one, or just a major area of ignorance. As site-specific knowledge
decreases, basic geology becomes more important. Hence, there can be practical
value to research that sharpens estimates of the probability of finding commer-
cially viable deposits in a fundamental rock type.

The value of data-gathering actions (drilling, seismic work, etc.) depends on
prospectors' ability to interpret what they get. As a result, there is value to
activities that enhance that ability. Indeed, some such activities are routinely
figured into the costs of drilling (e.g., hiring consultants, conducting lab work
on core samples, installing software for visualizing underground structures).
Those who invest commercially in creating methods for signal extraction per-
form, in effect, generalized value-of-information analyses. They gamble that
someone will pay for their visualization software or their method for training
workers to use it. Of course, projects that are attractive in principle may fail to
fulfill their promise because of poor marketing or superior competing products.
Projects may also succeed beyond their realistic dreams if unanticipated uses

emerge.
As research becomes more fundamental, computing its value requires more

thought. There are more links between research and any given application, as
well as more applications to be analyzed. For example, improved science
education could improve the pool of young petroleum engineers. Their greater
productivity would have economic value for prospecting firms. Those who
provide that education should get credit for it, as well as for its contribution to
other industries. So should those who created the curriculum and those who
performed the fundamental science underlying it. Such research might provide
a better return than more direct investments, especially ones that are useless
without adequate personnel. Similarly dispersed value might come from solving
non-work problems (e.g., substance abuse, child care), so that workers can
focus on their jobs and extract information more efficiently.

Just framing these question properly requires an intellectual effort, not to
mention providing the needed parameter estimates. Nonetheless, with sufficient
thought, a value-of-information perspective can formalize these potential im-
pacts, helping scientists to articulate -and evaluate -claims that they often
make informally. With further modeling efforts, one might even evaluate allo-
cation procedures (e.g., individual-investigator versus center grants, intramural
versus extramural research). Such studies are a long way from the oil patch.
However, an analytical approach could clarify how their impacts trickle down
to signal extraction in prospecting, as well as which intermediate activities
might improve that flow (Galvin, 1998; Jones, Fischhoff and Lach, 1998, in

pres~).
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Integrated assessment

The success of such comprehensive analyses depends on being able to identify,
and then quantify, these relationships. To do so can be a challenging task,
requiring the integration of results from diverse fields. Basic research can
require characterizing multiple links in multiple contexts. For example, im-
proved estimates of the inflation rate can aid many economic decisions; such
improvements are one benefit of research into consumers' beliefs about future
economic conditions. Anticipated immune system robustness plays a role in
many medical decisions; predictions about it might be improved by a better
understanding of basic biology, the effects of socioeconomic status and age on
health, etc. Thus, estimating the value of research related to inflation and
immune competence may involve understanding these 'upstream' and 'down-
stream' connections.

The emerging discipline for such analyses is often called integrated assess-
ment. Among the domains where it has been pursued most vigorously are
complex environmental problems, such as acid rain and climate change
(Dowlatabadi and Morgan, 1993, in press; Schneider, 1997). These models
provide a common platform for the contributing disciplines to pool their
knowledge, identify gaps, and establish research priorities. These are, typically,
reduced-form models. They attempt to capture the key relations among the
outputs of the relevant sciences, capitalizing on the detailed research without
being drowned by it. Such models could be represented in various ways. A
common formalism is influence diagrams (Clemen, 1991; Howard, 1989). These
are directed graphs, in which each node represents a variable. An arrow con-
nects two nodes, if the predicted value of the variable at its head depends on the
estimated value of the variable at its tail.

Figure 1 presents such a model, integrating a research project on the risk
posed by cryptosporidium in domestic water supplies (Casman et al., 1999).
Problems typically arise when run-off carries these parasites from land grazed
by infected livestock. When ingested, they can cause intestinal problems, which
are discomfiting for healthy people, potentially lethal for immunocompromised
ones. Estimating these risks requires inputs from microbiology (dose-response
relationships), civil engineering (filtration and testing), ecology (land use),
communications (attention to 'boil water' warnings), and psychology (per-
ceived risk), among other disciplines. The computational version of this model
specifies values for the variable(s) at each node and for the dependencies
among them. In some cases, these estimates are extracted from empirical
studies; in others, they are but expert judgments. In some cases, the relevant
research has no other uses (e.g., the effectiveness of filtration systems designed
for this specific parasite); its total value could be calculated from models like
this, adapted to the conditions of different water supplies. In other cases, the
research needed for this model could sharpen other models as well (e.g.,
determinants of the credibility and clarity of warnings).

One advantage of the influence-diagram representation for integrated assess-
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ments is its ability to accommodate diverse forms of evidence. A second is that
its graphic form facilitates the cognitive task of figuring out how the pieces fit
together. Scientists can make the case for the value of their research by pointing
to the influence diagram and saying, 'Here is where I have something to add.'
Having done so, they can proceed to formalize their claims, knowing that they
have a place at the table. Even if no numbers are run, translating such claims
into model terms forces clarity about the variables (e.g., what do we mean by
'inflation rate,' 'immune system competence,' or 'warning'?) and their relation-
ships (e.g., avoiding recursive loops, with A predicting B predicting A, perhaps
through some intermediate variables). Inevitably, formalization requires at least
rough quantitative estimates -otherwise, anything that might conceivably be
relevant could find its way into the model (and the research agenda). These order-
of-magnitude judgments provide a transition to more quantitative analyses.

Research management

Figure 1 was created as the integrating core of a project focused on reducing
cryptosporidium risks by better communication with water consumers. How-
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ever, analyses using it found that current testing procedures are so ineffective
that an outbreak is likely to have passed (or at least peaked) before its source
is detected. As a result, improved communication of test results has little
immediate value for the general public. A definitive diagnosis of 'what hit
them' might help citizens decide what to do about policies affecting the risk of
future outbreaks (e.g., land use, filtration systems). In the short run, though, the
analysis suggested redirecting communication r~search from the general public
(where an outbreak would have moderate effects in many people) to special
populations (where a few people would experience severe effects). Assuming
that the research questions are equally tractable, the better investment was
in helping highly vulnerable individuals decide whether to rely routinely on
properly filtered bottled water.

This integrated assessment further suggests particularly high expected value
for research projects promising progress in improved parasite detection. If such
advances are frustrated by a fundamental knowledge barrier, then a case might
be made for appropriate basic research. Assessing the full value of that research
would, of course, require analyzing its expected impacts (if any) in other domains.
The 'upstream' determinants of cryptosporidium risk (e.g., land use) were outside
the scope of the research project, but might bear elaboration for other purposes.

Once research priorities have been identified, an integrated assessment pro-
vides a basis for analyzing a research enterprise's ability to address them. At a
minimum, one can ask whether anyone in the scientific community is supported
to understand each element in the influence diagram (Jones et al., 1998, in
press). More ambitiously, one can ask whether the investments are commensu-
rate with the opportunities. As mentioned, relevant research could attempt to
sharpen estimates of either the variables at the nodes or the dependencies
between them. Variable estimates can be improved both by measuring them
and by developing better measurement methods (thereby increasing the yield of
each measurement). Dependency estimates can be improved both by measuring
them and by refining the theories linking them (thereby increasing understand-
ing of what has been measured). The efficiency of research might be improved
by infrastructure investments, such as recruiting, training, archiving, and soft-
ware. Some of the latter activities might also improve the yield of research
in multiple areas. Those contributions would, then, have to be traced in the
integrated assessments coordinating those other areas.

If they hope to maximize (and demonstrate) the usefulness of their programs,
research managers need, somehow, to accomplish the work of integrated assess-
ment. That is, they need to identify their domain, determine which of its nodes
and links are most important, and ensure appropriate investments. If a pro-
gram serves a single client (e.g., oil prospectors), then its integrated assessment
may, initially at least, look much like that of its client. However, as the analysis
progresses, it may identify important opportunities lying outside that client's
conventional investments and, perhaps, the research program's boundaries. For
example, specialists in prospecting might lack expertise in training, just as
training specialists might not understand the needs of that industrv.
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When there is a mismatch between research priorities and institutional
capacities, a management response is needed. One such response is transferring
funds to programs that can address the research need, with appropriate joint
supervision. Another is adding 'absorptive capacity,' in the sense of staff
qualified to solicit and evaluate bridging proposals. More ambitious actions
are needed when domains share a need, such as infrastructure that supports
several sciences. Integrated assessment can clarify the multiple impacts of such
investments. Such analyses are steps toward answering the recurrent strategic
management question of whether funding levels are appropriate.

Conclusion

The current system for funding science is largely reactive. It changes when some
research managers or decision makers sense a need and manage to make a case
for it. Although this system has served us well, it is inherently vulnerable: some
research groups may be disproportionately effective advocates, while others
lack efficient mechanisms for getting organized or are too busy (or pessimistic)
to try. Some practitioners and scientists may not recognize their mutual rele-
vance, leaving opportunities unaddressed. The system as a whole may have
undue inertia, favoring existing programs over proposed ones (if only because
its procedures for evaluating proposals best suit familiar forms of research)
(House Committee on Science, 1998; National Research Council, 1995a; 1998b;

Tengs, 1998).
By facilitating value-of-information analyses, integrated assessments offer

partial solutions to these problems. Research portfolios will be clearer if their
elements are characterized in formal terms, showing the uncertainties that each
project is meant to reduce. By accommodating diverse research activities, such
analyses should create a relatively level playing field. Moreover, they should
encourage researchers to enter it by helping them to tell their story -about how
their work relates to practical concerns and to other research. The exercise
might even suggest ways to reshape their research in order to have a better

story to tell.l
Anything that gets researchers talking in better-coordinated, more practical

terms should help research managers explain their programs to funders. Expos-
ing the logic of a program to public scrutiny might encourage charges of
funding imbalances. However, it also provides an orderly way to address them.
Differential funding rates can be appropriate in a value-of-information sense. A
topic is justifiably neglected if reducing the associated uncertainty would make
little difference or if there are few cost-effective ideas for doing so (Davies,
1996). Integrated assessment provides a structure for making (and evaluating)
such arguments, as well as for more quantitative analyses, should they be

warranted.
Integrated assessments will, naturally, look somewhat different for problem-

oriented and discipline-oriented research programs. The former will typically
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work backward from an objective (e.g., more oil, shortened hospital stays)
toward more fundamental topics. The latter will work forward from core interests
and competencies toward practical implications of possible research results.

A research program's structure should be more accessible to researchers
when laid out in integrated-assessment terms compared to the topic list of a
conventional program announcement. They might find that their work is not as
pertinent as they had imagined, when they thought about being 'useful' in
general terms. They might also find ways to make their research more relevant,
without violating its overall mission.

Looking across the integrated assessments for different problems may reveal
unproductive duplication, unrealized complementarity, repeatedly neglected
opportunities, and overemphasized topics. For example, the information yield
from clinical trials declines when participants drop out and when they stay in,
but fail to follow the protocol (i.e., take their medication, avoid other drugs,
keep experience logs). Seeing this problem recur in multiple contexts might
prompt a research initiative on such behavior. Such basic knowledge might be
so valuable that the sponsors of clinical trials might voluntarily 'tithe' for its
creation. If they needed further convincing, one could 'run the numbers' to
calculate the return on that investment.

The US NSF's current Human Capital Initiative reflects a claim by social
scientists to have a portfolio of projects that could significantly advance the
national economy, by improving its workers' productivity. Generally speaking,
these projects aim to increase mastery of the intellectual skills involved in
extracting information. Formalizing this claim requires practitioners to be
explicit about their needs and researchers to be explicit about their capabilities.
Completing the analysis might prompt research on impacts (e.g., howeffective
are training programs or improved computer displays?), on bridges (e.g., how
can cognitive research be made more useful to industrial trainers?) and on the
assessment process (e.g., do researchers over- or underestimate the yield from
their work?).

A work plan

People don't, won't, and probably shouldn't change how they think and work
overnight. Given the importance of maintaining cognitive control over one's
affairs, changing too fast can be dangerous. The purpose of this article has been
to make the case that some change is needed -and that some slow progress is
possible, using integrated assessment to implement a value-of-information
perspective. Given the complexity of the issues, developing methods and culti-
vating understanding in the scientific community would have to proceed in
tandem. The first steps in that direction might include.
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Worked examples

Because people master principles through examples, well-developed case studies
are a priority. Ideally, they would address problems of sufficient complexity to
test the method and include roles for multiple sciences. Oil prospecting is one
(obvious) candidate. Global change research is another. Much of its funding
has been generated by promises of helping to solve practical problems. It
should benefit from analyses clarifying the rationale for its budget allocations
and demonstrating the connections between research and reality (National
Research Council, 1999). Its researchers are pioneers in the development of
integrated assessment, including research on how to assess the scientific uncer-
tainty central to quantitative analyses.

FAQs

The very mention of an unfamiliar procedure will evoke preconceptions that
shape people's thinking about it. If mistaken, these beliefs can interfere with
mastering its details and even with willingness to try to do so. The most frequently
asked questions might be collected and addressed directly in explanatory
material (after being tested for comprehensibility). Likely questions include:
(a) Doesn't the approach place too high a premium on economic outcomes?
(b) How can you place a value on research that creates delight in the beauty of
the universe? (c) How do you value graduate training for students who do and
do not stay in the basic science for which they were trained? (d) How can you
compare clinical trials with basic bioscience?2

Basic research

Adopting a scientific approach to the management of science may require an
investment in that science. Some will be spent in the conduct of analyses per se.
Some will be spent in helping individual sciences develop relevant models.
Done correctly, this effort should not feel like an odious exercise in mechanistic
accountability, threatening to contort science for measurement sake. Rather, it
should provide information that scientists themselves would like to know (e.g.,
how well can we estimate the yield from our experiments? How do we compare
the value of center and single-investigator grants?). Thus, there should places
for both basic applied research (addressing fundamental questions arising from
applications) and applied basic research (making use of what we know already)

(Baddeley, 1979).

~
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Initial procedures

Finally, a plan is needed for gradual introduction and testing. There should be
time to learn -and to complain when the approach is not (yet) working.
Scientists willing to try an analytical approach should not be penalized for
exposing themselves to such scrutiny. The process itself should be evaluated
critically, held to the standards that it attempts to implement. Its introduction
could begin by shadowing conventional allocation practices, supplanting them
over time as the approach takes shape and achieves credibility. Integrated
assessments are scalable in the sense that simple qualitative models can evolve
into more complex and quantitative ones. Properly executed (and explained),
the approach should be seen as facilitating intellectual activities that scientists
are attempting to accomplish anyway.

..,.
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Notes

I. Fischhoff, Downs and Bruine de Bruin (1998) offer such an encompassing perspective for the
domain of infectious disease, focused on those transmitted through sexual contact.

2. Brief answers (in order): (a) One can evaluate contributions in terms of any outcome that is
given explicit expression. (b) If delight is not an end in itself (hence entitled to resources
dedicated to purely noninstrumental science), it can still be evaluated as a contributor to
recruiting talented, committed individuals to science, increasing the productivity of their dis-
ciplines. (c) Training improves one's ability to extract information from relevant situations. (d) If
the research is justified on practical grounds, then the potential broad impacts of basic bio-
science need to be sketched in terms comparable to those of focused clinical trials.

~
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